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1. Introduction

Motivic integration is inspired by p-adic integration, but by the lack of topological 
local compactness, it is not subject to standard measure theory. Instead, different, more 
abstract formalisms have been developed: by Kontsevich initially in a smooth setting 
[29]; by Batyrev [2] based on σ-algebras; variants by Denef and Loeser more generally 
on singular spaces, both geometric [22] and arithmetic-geometric [23]; by Loeser, Nicaise 
and Sebag [31,35] in mixed and positive characteristic using Néron models; and, more 
recently, with Fubini results and Fourier transform included in the realm of motivic 
integration by Loeser and the first author [15–17] and, by Hrushovski and Kazhdan [27]. 
Motivic integration has found striking applications going from the equality of Hodge 
numbers for birational Calabi-Yau variaties, to the study of stringy invariants [2,38,1], 
motivic Milnor fibers [35,28] and the log-canonical threshold [33], and, to applications 
in the Langlands program [10,39,8,5].

In this paper, we develop new insights in the treatment of [16,17]. A priori, a motivic 
function in this formalism is an abstract geometric object. We show that those objects 
can be considered as actual functions, in the sense that they are determined by evaluation 
in points (Theorem 1). Similarly, (abstract) relative integrability is determined fiber by 
fiber (Theorem 2). Both these insights lead to simplifications of the theory of motivic 
integration from [16,17], e.g. as given in Corollaries 3.6.1, 3.6.3, 3.6.5 and 3.6.6.

To put this paper into a historic perspective, recall that motivic constructible functions 
(of class C ) and their integrals from [16, Theorem 10.1.1 and Sections 13.2, 14.3] are an 
abstract framework of integration with Fubini properties, inspired by the p-adic functions 
introduced by Denef in [19], see [21, Section 1.5]. These were extended both p-adically 
and motivically with additive characters and Fourier transforms in [17] (forming the class 
C exp) and uniformly through all p-adic fields in [11]. This went along with a growing 
understanding of the model theory of valued fields, in particular with cell decomposition 
results from [20,36] and later variants like [11, Theorem 5.3.1] for all p-adic fields. We 
hope that our work will be helpful for going from uniform p-adic results in the style of 
e.g. [9,13] to deeper motivic results as in [37]. The non-nullity results of this paper may 
also play a role in the study of motivic analogues of the Fundamental Lemma of the 
Langlands program as in [32], and in a motivic variant of the p-adic results from [12] on 
Kontsevich-Zagier style integral transformation rules.

1.1. Let us sketch our main results in some more detail. For any motivic constructible 
(exponential) function f as defined in [16, Section 5.3], resp. [17, Section 3.3] and recalled 
in Section 3, we define the notion of the evaluation f(x) of f at a point x in the domain 
X of f (see Definition 3.5.1), and prove the following non-nullity result. (A discussion of 
the terminology follows after Theorem 1.)

Theorem 1. Let X be an S-definable set and let f and g be in C (X). Then the following 
statements are equivalent.
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(1) One has f(x) = g(x) for all points x on X.
(2) One has f = g in C (X).

Moreover, the same equivalence holds with C e(X) and with C exp(X) instead of C (X). 
In particular, one has that f(x) = 0 for all points x on X if and only if f = 0.

We now briefly explain the terminology used in Theorem 1:

• The notion of S-definable set is fixed in Convention 3.1.1 using the more general 
terminology of Section 2, which is designed to deal uniformly with non-elementary 
classes S of structures and with (points on) definable sets within those structures. It 
corresponds to a certain notion of subassignments of [16], see Remark 3.1.2. Apart 
from being shorter, it is also more handy for our use, especially since we need to 
change S flexibly. The relevance of non-elementary classes in this context is explained 
in Section 1.2.

• The rings C (X), C e(X) and C exp(X) are recalled in Sections 3.2 and 3.3, from [16, 
Section 5.3] and [17, Sections 3.3 and 6.2]. Elements of C (X) are called motivic con-
structible functions on X in [16]. The ring C exp(X) additionally contains a ‘motivic’ 
additive character to enable motivic Fourier transform, and its elements are called 
motivic constructible exponential functions in [17]. The ring C e(X) lies in between 
C (X) and C exp(X), with a motivic additive character on the residue field only.

• The notion of a point x on an S-definable set X of Definition 2.2 is similar to the 
one of [16, Section 2.6]; essentially, it is an element of XK for some structure K in 
S, see Definition 2.1. The precise definition of f(x) for a point x on X is given in 
Definition 3.5.1.

The ring C (X) of motivic constructible functions on an S-definable set X is defined 
abstractly and not so much is known about it in general. The same holds for its variants 
C e(X) and C exp(X). The point of Theorem 1 is that it permits one to view an element 
f of C (X) (and of C e(X) and C exp(X)) as an actual function. In other words, knowing 
f abstractly or knowing the function sending points x on X to f(x) amounts to the 
same information. This leads to various possible simplifications of the presentation and 
usage of the Cluckers–Loeser framework of motivic integration. For example, the delicate 
projection formula for motivic integrals shown recently in [6, Theorem 1.1] (which refines 
the projection formulas from [16, Theorem 10.1.1 A3, Proposition 13.2.1 (2)] and [17, 
Theorem 4.1.1 A3]), follows easily from Theorem 1; see Corollary 3.6.6. As another 
example of a simplification, using Theorem 1, one can now consider the abstractly defined 
pull-back g∗(f) of an element f of C (Z) under an S-definable function g : X → Z as 
an actual composition (see Corollary 3.6.1). Note that, originally, g∗(f) is defined more 
abstractly in C (X), and similarly for the cases of C e and C exp. Likewise, the relative 
motivic integral (along g) of a suitably integrable function h in C (X) is determined by 
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the motivic integral of h restricted to each fiber of g (see Definitions 3.4.2, 3.6.2 and 
Corollary 3.6.3).

The next theorem completes our main results. It states that checking relative integra-
bility can also be done in a point-wise way. This allows us to reprove the integrability 
condition obtained in [6, Theorem 1.1 (1)] (see (1) of Corollary 3.6.6 below). The precise 
meaning of integrability in dimension d comes from [16, Section 14] and [17, Section 4.3]
and will be specified below in Definition 3.4.2.

Natural definitions of g−1(z) and f|g−1(z) for g : X → Z an S-definable function, z a 
point on Z, and f in C (X) (or in C e(X), or C exp(X)) are given In Section 3.5, again 
using general notions from Section 2 together with Convention 3.1.1 for S.

Theorem 2 (Relative integrability versus integrability in all fibers). Let X and Z be S-
definable sets, let f be in C (X), and let g : X → Z be an S-definable function such that 
the fibers have (valued field) dimension ≤ d for some integer d ≥ 0 (see Definition 3.4.1). 
Then the following are equivalent, with integrability as defined in Definition 3.4.2.

(1) f is integrable in relative dimension d over Z along g : X → Z (that is, in the fibers 
of g).

(2) For each point z on Z, the restriction f|g−1(z) is integrable in dimension d.

The same equivalence holds when f lies in C e(X) or in C exp(X).

The notion of integrability from Definition 3.4.2 is indirectly based on classical summa-
bility of series of positive real numbers, indexed by the value group, as is the case for the 
integrability notions in [16] and [17]. This uses that the value group of the fields in S is Z
itself and not a nonstandard model of (the theory of) Z. In Section 4, we give a simplified 
account of the integrability notions from [16, Theorem 10.1.1 and Sections 13.2, 14.3]
and [17, Theorem 4.1.1], based on direct criteria rather than on uniqueness and existence 
results. The definitions of relative integrability from [16, Theorem 10.1.1 and Sections 
13.2, 14.3] and [17, Theorem 4.1.1] thus become more natural and intuitive by Theorem 2
and by the criteria from Section 4. Note that integrating in fixed relative dimension d as 
in Theorem 2 is key to general relative integration, as other relative dimensions can be 
reduced to this case up to taking a finite partition of X, see the discussion just below 
Definition 3.4.2.

1.2. We now discuss the use and subtlety of non-elementary classes of valued fields.

• In the context of motivic integration, one often uses non-elementary classes of valued 
fields. This is mainly to fix the value group to be Z and to use standard summation 
on it. In particular, geometric power series and their derivatives like 

∑
i≥0 i

nri with 
real r < 1 and integer n ≥ 0 are classical when i runs over Z, but they would become 
unclear if i were to live in a more abstract value group. Such concrete summation 
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allows us to simplify sums over the value group, in comparison with e.g. [27], where 
other value groups are used.

• One of the subtleties for proving Theorem 1 is that the structures in S do not form 
an elementary class, so that logical compactness can not be used, and neither can 
infinitely large elements be used. This is different from the Hrushovski-Kazhdan 
framework of motivic integration [27], where an elementary class of models is used 
throughout, and where non-nullity as given by Theorem 1 is not an issue. For exam-
ple, for a relation like Li[X] = [Y ] in C (Z) where i is the variable, running over the 
value group, L is the class of the affine line over the residue field, and with X and 
Y some S-definable sets in the residue field sort, this makes a difference. Knowing 
Li[X] = [Y ] in C ({i}) for each integer i separately is very different than it would be 
to know it for each element i of an elementary class of value groups, or, even just for 
a single infinitely large value of i.1

1.3. Both Theorems 1 and 2 can easily be generalized to other classes of motivic 
functions than C , C e and C exp from [16, Section 5.3] and [17, Sections 3.3 and 6.2], 
like the ones listed in [18, Section 3.1] and corresponding variants C rat (with more 
localisations) obtained from groupifying the semigroups C rat

+ from [34, Definition 3.1.6]. 
Furthermore, Theorem 1 can be used to simplify the frameworks of [16–18,34] and to 
simplify issues about null-functions and parameter integrals from e.g. [5,6,13,37].

1.4. Description of the ideas

Our notion of evaluation and the related notions are natural and based on changing 
theories by adding constant symbols and passing to complete theories (see Section 3.5). 
Adding constants and changing theories accordingly is standard in model theory, and is 
often done similarly, e.g. for working with types. We develop some general terminology 
in Section 2, where we allow non-elementary classes of structures to work with uniformly 
definable sets.

The proof of Theorem 1 for C and C e is reduced to the case where X does not involve 
valued field coordinates and thus only residue field and value group coordinates. This 
reduction is done using Proposition 4.6 which relies on work of Pas [36]. The case for 
C exp is reduced to C e by Proposition 4.3. On the residue field level, one uses logical 
compactness to show non-nullity (see Case 1 of the proof of Theorem 1). This is allowed 
since we impose in Convention 3.1.1 that the residue fields of the structures in S run over 
all models of a theory and thus form an elementary class. For the value group (which is 
Z) a more delicate reasoning is needed. Essentially, we use basic tricks like taking the 
difference of f(i + 1) with f(i), which makes certain degrees (in i and in Li) go down so 
that induction comes to help (see Case 2 of the proof of Theorem 1).

1 This is a hypothetical example since the framework with C does not yet exist in a variant with more 
general value groups.
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For the proof of Theorem 2, we again reduce from C exp to C e using Proposition 4.3. 
Next, we reduce to the case that X does not involve valued field coordinates by Propo-
sitions 4.6 and 4.7, so that the occurring dimension (in the valued field) is d = 0. By the 
proofs of [16, Theorem 10.1.1] and [17, Theorem 4.1.1], integrability conditions always 
come from summation over the value group via summability conditions of real numbers, 
by replacing L (the class of the affine line in the residue field sort) by real numbers q > 1. 
This allows us to use a criterion about summation of motivic functions of class C and 
C e over ZR (see Proposition 4.2), and then the proof of Theorem 2 can be finished by 
an application of Theorem 1.

Familiarity with [16,17] is necessary to understand full details; nevertheless, a more 
global reading of this paper is also possible without such familiarity.

2. Definable sets within collections of structures

This section is completely general, and introduces handy terminology in first order 
logic to work simultaneously with all structures in a given (not necessarily elementary) 
class. From Section 3 on, we will put ourselves back in the context of henselian valued 
fields.

In this section we define a variant of the notion of ‘definable set’ which specifies at the 
same time in which structures they live. Classically in model theory one considers either 
a fixed structure, or, one works with an elementary class of structures. We allow non-
elementary classes of structures, and we make that explicit in our notation. In particular, 
we will speak of S-definable rather than L-definable with S a collection of L-structures 
for some language L. While some related objects and manipulations could be defined in 
terms of the common theory of the structures S, others, like the notion of “points on 
definable sets” from Definition 2.2 depend finely on the collection S itself.

In this section, let S be a nonempty collection of L-structures in some language L (a 
first order language, as usual in model theory). We will, at the beginning of Section 3, 
fix a language L and a collection S of L-structures according to Convention 3.1.1.

Definition 2.1. By an S-definable set is meant a collection of sets X = (XK)K∈S such 
that there exists an L-formula ϕ with ϕ(K) = XK for all K in S and where ϕ(K) stands 
for the set of tuples in the L-structure K that satisfy ϕ.

By an S-definable function g : X → Z between S-definable sets X and Z is meant a 
collection of functions gK : XK → ZK for K in S such that the collection of the graphs 
of the gK forms an S-definable set.

Basic terminology of set theory can and will be used: An S-definable bijection between 
S-definable sets X and Z is an S-definable function g : X → Z such that gK is a bijection 
for each K in S, and similarly for S-definable injections, surjections, subsets, Cartesian 
products, pre-images, fiber products, etcetera. Slightly more subtly, we call a collection 
of S-definable subsets Xi of X a partition of X, if for each K in S the nonempty sets 
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among the Xi,K form a partition of XK , and, for each i there is at least one structure 
K in S such that Xi,K is nonempty.

Definition 2.2. For an S-definable set X, a pair x = (x1, K1) with x1 in XK1 and K1 in 
S is called a point on X.

Definition 2.3. Given a point x = (x1, K1) on an S-definable set X, write L(x) for the 
language L expanded by constant symbols for the entries of the tuple x1, and write S(x)
for the collection of L(x)-structures which are L(x)-expansions of L-structures in S that 
are elementarily equivalent to the L(x)-structure K1 (where in K1, the new constants 
are interpreted by x1).

Definition 2.4. Let x = (x1, K1) be a point on an S-definable set. By a harmless abuse of 
notation, we denote by {x} the S(x)-definable set sending K in S(x) to {x}K := {x1,K}, 
where x1,K is the interpretation in the L(x)-structure K of the tuple of constant symbols 
introduced for x1. Likewise, if g : X → Z is an S-definable function and x = (x1, K1)
is a point on X, then we write g(x) for the corresponding point (z1, K1) on Z, with 
z1 = gK1(x1). (With a similarly harmless abuse of notation, one sometimes just writes 
x instead of {x}.)

Let us fix some further notation. Consider a point x on an S-definable set X. Then any 
S-definable set Z naturally determines an S(x)-definable set, which we denote by ZS(x). 
In detail, ZS(x) associates to K in S(x) the set ZK|L , where K|L in S is the L-reduct 
of K. We call ZS(x) the base change of Z to S(x). (Note that the notation ZS(x) is in 
close analogy to the usual notation for base change in algebraic geometry.) Similarly, any 
S-definable function g : Z → Y between S-definable sets determines an S(x)-definable 
function gS(x) : ZS(x) → YS(x). We use natural related notation, for example, for a 
point y on Y , we write g−1(y) for the obvious S(y)-definable subset of ZS(y), that is, 
for the pre-image of {y} under gS(y) (which could more formally also be denoted by 
(gS(y))−1({y})).

When p : W ⊂ X × Y → Y is the projection to the Y -coordinate with X, Y, W some 
S-definable sets, we sometimes write Wy for p−1(y) (which formally is an S(y)-definable 
subset of WS(y)). If furthermore h : W → V is an S-definable function, then we write 
h(·, y) for the restriction of hS(y) to Wy.

3. Definition of evaluation and corollaries of the main results

After recalling notation from [16,17], we define the evaluation f(x) of a motivic con-
structible (exponential) function f at a point x and introduce some related notation like 
f(y, ·), in line with the notation of Section 2.
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3.1. Notation from [16,17] with small tweaks

We start by recalling some notation from [16, Section 2], [17, Section 2]. There are some 
small differences however: we work with S-definable sets instead of some subassignments 
(see Remark 3.1.2), and we write VFm ×RFn ×VGr, resp. C exp(X) and C e(X) instead 
of h[m, n, r], resp. C (X)exp and C (X)e.

Let L be an expansion by constant symbols of the Denef-Pas language LDP (in any 
of the three sorts). Recall that LDP is the language with three sorts VF, RF and VG
(for valued field, residue field and value group), a relation symbol for the graph of the 
valuation map from nonzero elements in VF to VG, an angular component map ac from 
VF to RF, the ring language on VF, the ring language on RF, and the language of 
ordered groups on VG. Recall that an angular component map on a valued field K with 
residue field k is a multiplicative map K → k which on units in the valuation ring of K
coincides with the projection modulo the maximal ideal.

From now on, and also in Theorems 1 and 2, we let S be according to the following 
convention. (Note that in Section 2, S was allowed to be more general.)

Convention 3.1.1. We assume that L is an expansion by constant symbols of the Denef-
Pas language, and that S is a nonempty collection of L-structures of the form K =
(k((t)), k, Z), where each such k is a field of characteristic zero and where K carries 
the natural L-structure with ac(t) = 1 and ord(t) = 1. We assume moreover that the 
collection consisting of the residue fields k of the structures in S forms an elementary 
class.

Recall that a collection is called an elementary class if there is a theory T such that 
the models of T form precisely the collection.

From here on, S-definable sets and functions are thus as in Definition 2.1 for some L
and S as in Convention 3.1.1. We consider VF, VG and RF as S-definable sets. In detail, 
VF is the collection (VFK)K∈S , where, for K = (k((t)), k, Z) in S, one has VFK = k((t)), 
and analogously for VG and RF.

Remark 3.1.2. Let us compare our notion of S-definable sets with subassignments from 
[16]. The most flexible variant of subassignments comes from [16, Section 2.7] and is 
called ‘L-definable T -subassignment’, with k1 a choice of base field of characteristic zero, 
S1 a subring of k1((t)) and T a theory in the language of rings with constant symbols 
for the elements of k1, and, where L is the expansion of LDP with constant symbols for 
elements of k1 in the residue field sort and for elements in the subring S1 of k1((t)) in 
the valued field sort. This expansion is denoted by LDP(S1) in [16, Section 2.7]. The 
corresponding S would consist of all L-structures of the form K = (k((t)), k, Z), where 
k contains k1 and with subring S1 of k((t)). In Convention 3.1.1 we allow L to expand 
LDP by constant symbols in a slightly more general way. All results and definitions of 
[16] and [17] extend naturally to this set-up (indeed, [16] and [17] work throughout with 
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family versions in the sense of relative versions over definable subassignments serving 
as parameter spaces, which implies variants with general constant symbols by standard 
model theoretic techniques). A reader who wants to avoid this extra generality may use 
the additional assumption throughout the paper that S comes precisely from some choice 
of k1, S1 and T as in [16, Section 2.7] as explained in the above discussion.

Remark 3.1.3. Definition 2.2 of points on an S-definable set X corresponds to the defini-
tion from [16, Section 2.6] of points on subassignments. However, the way we work with 
a point x = (x1, K1) is different: For us, L(x) is the expansion by constants for x1 and 
S(x) consists of structures L(x)-elementarily equivalent to K1, whereas in [16, Section 
2.6] one uses the expansion L(K1) of L by constants for all elements of K1 and the 
collection S(x)′ ⊂ S of those structures in S that contain K1 (equipped with the natural 
L(K1)-structure). Similarly, in [16, Section 2.6], a fiber of an S-definable g : Y → X

above a point x on X has a different meaning than the S(x)-definable set that we denote 
by g−1(x) (see Section 2). This also makes a difference for the notion of evaluation of 
motivic functions at points; see Definition 3.5.1 and Remark 3.5.2.

3.2. The class C

Given an S-definable set X, we will now define the ring C (X) of constructible motivic 
functions on X, in line with the rings C (X) and C (X, (L, T )) in Sections 5.3 and 16.1 of 
[16]. The elements of C (X) are more informally called functions of C -class on X, and, 
more formally, they are called motivic constructible functions.

Let A be the localisation of the polynomial ring Z[L] (in one formal variable L) by L
and by all elements of the form (1 − Li) for integers i < 0. Symbolically, one can write 
A = Z[L, L−1, 

⋃
i<0

1
1−Li ].

Define P(X) as the subring of the ring of all functions sending points x = (x1, K1)
on X to elements of A, generated by the following functions

(1) The constant function sending each x to a, with a an element of A.
(2) The function sending x to Lα(x), where α : X → VG is an S-definable function, and, 

where α(x) is seen as element of Z.
(3) The function sending x to α(x), where α : X → VG is an S-definable function, and, 

where α(x) is seen as element of Z.

Next, define the group Q(X) as the quotient of the free abelian group generated by 
symbols �Y � for S-definable sets Y ⊂ X × RFn with n ≥ 0, by the relations

(1) �Y � = �Y ′� if there exists an S-definable bijection Y → Y ′ over X (that is, making 
a commutative diagram with the coordinate projections from Y and Y ′ to X).

(2) �Y ∪ Y ′� = �Y � + �Y ′� for disjoint S-definable subsets Y and Y ′ of X × RFn.
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We denote the equivalence class of an element �Y � inside Q(X) by [Y ]. In fact, the 
group Q(X) becomes a ring with product induced by the fiber product over X. In 
detail, one defines [Y ] · [Y ′] by [Y ×X Y ′], with Y ⊂ X × RFn and Y ′ ⊂ X × RFn′

and 
Y ×X Y ′ ⊂ X × RFn+n′

the fiber product of the projections Y → X and Y ′ → X.
Note that the ring Q(X) is denoted by K0(RDefX) in [16, Section 5.1.2].
Write P0(X) for the subring of P(X) generated by the constant function L, and, 

by all characteristic functions 1Y of S-definable sets Y ⊂ X. There is an injective ring 
homomorphism P0(X) → Q(X) sending L to [X × RF] and sending 1Y to [Y ].

Finally, define C (X) as the tensor product of rings

C (X) := Q(X) ⊗P0(X) P(X).

Without harm we write L for [RF × X] in C (X). Thus, L is the class of the affine 
line in the residue field, over X.

3.3. The classes C e and C exp

Given an S-definable set X, we will now define the ring C exp(X) of constructible 
exponential motivic functions on X, and also the smaller ring C e(X), in line with [17, 
Sections 3 and 6.2]. Elements of C exp(X) are more simply called functions of class C exp

on X; more formally, they are called motivic constructible exponential functions. We 
start with defining Qexp(X) and Qe(X).

Define the group Qexp(X) as the quotient of the free abelian group generated by 
symbols �Y, ξ, h� for S-definable sets Y ⊂ X×RFn with n ≥ 0 and S-definable functions 
ξ : Y → RF, h : Y → VF, by the relations

(1) �Y, ξ, h� = �Y ′, ξ′, h′� if there exists an S-definable bijection f : Y → Y ′ over X
such that ξ′ ◦ f = ξ and h′ ◦ f = h.

(2) �Y ∪Y ′, ξ ∪ ξ′, h ∪h′� = �Y, ξ, h� + �Y ′, ξ′, h′� for disjoint S-definable subsets Y and 
Y ′ of X × RFn, and where ξ ∪ ξ′ : Y ∪ Y ′ sends y to ξ(y) if y ∈ Y and to ξ′(y) if 
y ∈ Y ′, and similarly for h ∪ h′.

(3) �Y, ξ, h1 + h2� = �Y, ξ + h̄1, h2� where the hi : Y → VF are S-definable functions 
for i = 1, 2 such that furthermore ordh1(y) ≥ 0 for all y in Y , and where h̄1 the 
reduction of h1 modulo the maximal ideal.

(4) �Y ×RF, ξ + p, h� = 0 when h : Y ×RF → VF and ξ : Y ×RF → RF both factorize 
through the projection Y × RF → Y and where p : Y × RF → RF is the projection.

Again, we denote the equivalence class of an element �Y, ξ, h� inside Qexp(X) by 
[Y, ξ, h].

The group Qexp(X) becomes a ring with product induced by the fiber product over 
X. In detail, one defines [Y, ξ, h] · [Y ′, ξ′, h′] by [Y ⊗X Y ′, ξ ◦pY +ξ′ ◦pY ′ , h ◦pY +h′ ◦pY ′ ], 
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with Y ⊗X Y ′ ⊂ X × RFn+n′
the fiber product of the projections Y → X and Y ′ → X

and with pY : Y ⊗X Y ′ → Y and pY ′ : Y ⊗X Y ′ → Y ′ the projections.
We define Qe(X) as the subring of Qexp(X) generated by the elements [Y, ξ, 0]. Note 

that the ring Qexp(X) is denoted by K0(RDefexp
X ) in [17, Section 3], and Qe(X) by 

K0(RDefeX) in [17, Section 6.2].
Finally define the rings

C exp(X) := Qexp(X) ⊗Q(X) C (X)

and

C e(X) := Qe(X) ⊗Q(X) C (X).

There are natural inclusions of rings

C (X) → C e(X) → C exp(X), (3.1)

by [17, Lemma 3.3.1].

3.4. Integrability

We rely on [16,17] to fix our notion of integrability, without recalling the full details. 
In fact, after Theorem 2 and our criteria from Propositions 4.2 and 4.3, the original 
definition of integrability for functions of the classes C , C e and C exp in [16,17] seem to 
become less important.

Definition 3.4.1 (Dimension). Let d ≥ 0 be an integer. For an S-definable set X with 
X ⊂ VFm × RFn × VGr, say that X has dimension at most d if for each K in S, there 
exists a VFK-linear function f : VFm

K → VFd
K such that f has finite fibers on AK , with 

AK the image of XK under the coordinate projection XK → VFm
K . Say that X has 

dimension d if moreover f(AK) has nonempty interior in VFd
K for some K in S and 

some choice of linear function f , with the valuation topology on VFd
K . If an S-definable 

function g : X → Z is given, say that X has relative dimension at most d (along g) if 
the fibers of g have dimension at most d.

Definition 3.4.2 (Integrability). Let f be in C (X), in C e(X) or in C exp(X) and let g :
X → Z be an S-definable function whose fibers have dimension at most d. One calls f
integrable in relative dimension d over Z along g (namely in the fibers of g) if the class 
of f in Cd(X → Z) lies in IZC(X → Z), resp. the class of f in Cd(X → Z)exp lies in 
IZC(X → Z)exp with notation from [16, Section 14], resp. [17, Section 4.3]. One simply 
says integrable in dimension d (instead of integrable in relative dimension d over Z along 
g) if ZK is a singleton for each K in S.
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We will give self-contained criteria for the notion of relative integrability in Propo-
sitions 4.2 and 4.3. The more general notion of integrability of f in relative dimension 
d′ over Z for a given d′ with 0 ≤ d′ ≤ d requires in particular that the support of f is 
contained in an S-definable X ′ set of relative dimension at most d′ over Z. But in such a 
case one can usually simply restrict f to X ′ and work as in Definition 3.4.2 again, with 
d = d′. This more general notion of integrability (namely in smaller relative dimensions) 
is not used outside of Proposition 4.7, where its meaning is recalled.

3.5. Evaluation in points

Let L and S be as in Section 3.1, let Z be an S-definable set, and let z be a point on 
Z. We use notation from Sections 2 and 3.1. By the definition of constructible motivic 
functions, any f in C (X) is built up from some S-definable sets and functions, and 
thus determines a constructible motivic function fS(z) in C (XS(z)), where S(z) is as 
in Section 2. Indeed, this is well-defined since going to S(z), all existing Grothendieck 
ring relations are preserved, and it clearly yields a ring homomorphism from C (X) to 
C (XS(z)). Similarly, f in C e(X) or in C exp(X) determines fS(z) in C e(XS(z)) resp. in 
C exp(XS(z)).

Recall that given an S-definable set X and an S-definable subset Y ⊂ X, we have a 
notion of restriction of a constructible function f in C (X) to f |Y in C (Y ) (and anal-
ogously for C e(X) and C exp(X)). More formally, f |Y equals the pull-back g∗(f) of f
along the inclusion map g : Y → X. We define the evaluation of a motivic function at a 
point as the restriction of the function to the corresponding one-point set:

Definition 3.5.1 (Evaluation). For f in C (X) and x a point on X, we define f(x) in 
C ({x}) as the restriction of fS(x) to {x}. (Note that {x} is an S(x)-definable subset of 
XS(x).) One defines f(x) likewise when f lies in C e(X) or in C exp(X).

Note that evaluation at a given point is a ring homomorphism (since the pull-back 
is).

Remark 3.5.2 (Comparison of evaluation with notions from [16,17]). Given a point x
on an S-definable set X and a function f in C (X), C e(X), or C exp(X), there is also 
a notion of evaluation of f at x in [16,17], denoted by i∗x(f) in Section 5.4 of [16] and 
in (4.3.1) of [17]. This notion is defined differently than in our Definition 3.5.1, instead 
using S(x)′ from Remark 3.1.3; this makes a difference for the ring in which the value 
of f at x lies. In detail, if we write {x}′ for the S(x)′-definable set given by a point x
on X, then i∗x(f) from [16,17] lies in C ({x}′), where f(x) from Definition 3.5.1 lies in 
C ({x}), and similarly for C e and C exp.

For an S-definable function g : X → Z we denote by f|g−1(z) the restriction of fS(z)
to g−1(z). When p : X ⊂ Y ×Z → Z is the projection to the Z-coordinate with X, Y, Z
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some S-definable sets, z a point on Z, and f in C (X), then we write f(·, z) for the 
restriction of fS(z) to Xz with Xz being p−1(z) as at the end of Section 2; note that 
f(·, z) lies in C (Xz). We use similar notation for f in C e(Z) and in C exp(Z).

Example 3.5.3. Here is an example where Theorem 1 would fail for the notion of i∗x(f)
from Section 5.4 of [16] instead of our notion of f(x) (see Remark 3.5.2 for notation). Let 
S be a collection of structures as before, thus in particular of the form K = (k((t)), k, Z), 
where we require moreover that all occurring k are algebraically closed and where we 
let L be LDP (without extra constant symbols). Let X be RF×, that is, the S-definable 
set which is the multiplicative group of the residue field. Consider the definable set 
Z ⊂ RF × X, given by the formula z2 = x, for variables (z, x) running over RF × X, 
and, consider the class [Z] of Z in C (X). Let f be [Z] − 2 in C (X). Then, with notation 
from Remark 3.5.2, for each point x on X we have i∗x(f) = 0. Indeed, in i∗x(f), one has 
constant symbols in particular for each square root of x, so that there is a definable 
bijection from the set of square roots of x to the two point set {0, 1}, for nonzero x in 
an algebraically closed field. However, f is nonzero in C (X). Indeed, one has f(−1) �= 0
by Proposition 5 of [30, Section 5], with our evaluation of f at −1 from Definition 3.5.1.

3.6. Some consequences of the main results

Recall from [16, Section 5.4], [17, Section 3.4] (or from the overview [37, Section 
2]) that, for any S-definable function g : X → Z, there are natural pull-back maps 
g∗ : C (Z) → C (X), g∗ : C e(Z) → C e(X), and g∗ : C exp(Z) → C exp(X), which are 
defined in [16, Section 5.4], [17, Section 3.4] as an abstract form of composition. By 
Theorem 1, this can now be seen as a concrete form of composition, as follows.

Corollary 3.6.1. Let X, Z be S-definable sets, let g : X → Z be an S-definable function 
and let f be in C (Z). Then the pull-back g∗(f) (as defined in [16, Section 5.4]) is the 
unique function in C (X) satisfying

(g∗(f))(x) = f(g(x))S(x) (3.2)

for each point x on X, where f(g(x))S(x) is the base change of f(g(x)) to S(x) as defined 
just below Definition 2.4. The same statement holds with C e or with C exp instead of C , 
with pull-back as defined in [17, Section 3.4].

Note that on the right hand side of (3.2), formally, f(g(x)) is an element of C ({g(x)}), 
where {g(x)} is considered as an S(g(x))-definable set, but we can canonically identify 
S(g(x))(x) with S(x).

Proof of Corollary 3.6.1. The pull-back satisfies (3.2), since the pull-back of a composi-
tion is equal to the composition of pull-backs (note that restriction to {x} is a pull-back 
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along the inclusion map {x} → XS(x)). Theorem 1 implies that this already determines 
g∗(f). �

We fix now what we mean by relative integrals, according to [16, Sections 14.1 – 14.3]
and [17, Section 4.3]. We again restrict our attention to fixed relative dimension, which 
is the key case for reasons already explained after Definition 3.4.2.

Definition 3.6.2 (Relative motivic integrals). Consider an S-definable function g : X → Z

with fibers of dimension at most d and a function f in C (X) which is integrable in relative 
dimension d over Z along g according to Definition 3.4.2. Let [f ] be the class of f in 
Cd(X → Z), with notation from [16, Sections 14.2]. Consider g!Z([f ]) in C (Z) from 
[16, Sections 14.2] and denote it by μZ,d(f). We call μZ,d(f) the relative integral of f in 
relative dimension d over Z along g. We define μZ,d(f) in C e(Z), resp. C exp(Z), similarly 
for f in C e(X), resp. C exp(X), using [17, Section 4.3].

The relative integral μZ,d(f) as in Definition 3.6.2 is a form of integration over each 
fiber of g. Note that, in [16, Sections 14.2], g!Z([f ]) is also denoted by μZ([f ]), but we 
denote it by μZ,d(f).

Corollary 3.6.3. Let X and Z be S-definable sets, let f be in C (X), and let g : X → Z

be an S-definable function with fibers of dimension ≤ d for some integer d ≥ 0. Suppose 
that for each point z on Z, the restriction f|g−1(z) is integrable in dimension d, as in 
Definition 3.4.2. Then f is integrable in relative dimension d along g, and, with notation 
from Definition 3.6.2, μZ,d(f) it is the unique function in C (Z) satisfying

μZ,d(f)(z) = μz,d(f |g−1(z)) (3.3)

for each point z on Z. The same statement holds when f lies in C e(X) or in C exp(X).

Proof. The relative integrability in relative dimension d follows from Theorem 2. That 
it satisfies (3.3) follows from [17, Equation (4.3.1)] applied to fS(z), and the inclusions 
from (3.1). Indeed, μZ,d from Definition 3.6.2 maps C (X) to C (Z) and C e(X) to C e(Z)
by (A1) of [17, Theorems 4.1.1, 4.3.1, Proposition 6.2.1]. The uniqueness comes from 
Theorem 1. �
Remark 3.6.4. Note that Corollary 14.2.2 of [16] looks similar to a part of Corollary 3.6.3, 
but then for C+ (the non-negative motivic constructible functions) instead of for C , C e

and C exp and with i∗x instead of our notion of evaluation at x (see Remark 3.5.2). It 
seems unlikely that this result of 14.2.2 from [16] could imply directly our results for 
C and C e. Note that, in any case, our results for C exp are completely different from 
Corollary 14.2.2 of [16], and, require very different work.

Theorem 1 implies a slightly more general variant, as follows.
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Corollary 3.6.5. Let g : X → Z be an S-definable function for some S-definable sets X
and Z and let f be in C (X). Then the following statements are equivalent.

(1) One has f|g−1(z) = 0 for all points z on Z.
(2) One has f = 0.

Furthermore, the same equivalence holds for f in C e(X) and in C exp(X).

Proof. The implication “(2) ⇒ (1)” is trivial. For the other one, note that given any point 
x on X, we obtain a point z = g(x) on Z, and for this z, f|g−1(z) = 0 implies f(x) = 0. 
Thus we have f(x) = 0 for all points x on X, so f = 0 follows from Theorem 1. �

Theorems 1 and 2 together also imply the projection formula of Theorems 1.1 and 
2.28 from [6]; for simplicity, we only cite the “non-relative version” from the introduction 
of [6], and, in fixed dimension d as in the above Definitions 3.4.2, 3.6.2.

Corollary 3.6.6 (Projection formula [6, Theorem 1.1]). Let X, W1, W2 and γ : W1 → W2
be S-definable and let f be in C (W2 ×X). Let X be of (valued field) dimension d. We 
write πi : Wi ×X → Wi for the projection and set γ̃ := (γ × idX) : W1 ×X → W2 ×X

and we use Definitions 3.4.2, 3.6.2.

(1) If f is integrable in relative dimension d over W2 along π2 (namely in the fibers 
of π2), then γ̃∗(f) is integrable in relative dimension d over W1 along π1; if γ is 
surjective, then the converse also holds.

(2) If (1) holds, then we have γ∗(μW2,d(f)) = μW1,d(γ̃∗(f)).

The same holds for f in C e(W2 ×X) or C exp(W2 ×X) instead of C .

Proof. (1) follows from Theorem 2; indeed, it allows one to check relative integrability 
in the fibers of πi on the points of Wi. For (2), note that Theorem 1 allows us to reduce 
to the case where W1 and W2 are both singletons (we need to prove the equality at each 
point w1 on W1, so we can replace W1 by {w1} and W2 by {γ(w1)}), and this case is 
immediate. �
4. Integrability revisited

The following propositions give a direct viewpoint on integrability, in comparison 
with the (less direct) existence/uniqueness results of integrable motivic constructible 
(exponential) functions from [16, Thm. 10.1.1, Prop. 13.2.1, Thm. 14.1.1], [17, Theorems 
4.1.1, 4.3.1]. Together with our main theorems, they lead to a simplified understanding 
of the framework of motivic integration of [16,17].

The proposition just below is based on the Rectilinearization of Presburger sets in 
families from [7]. It will allow us to formulate a first criterion for integrability in Propo-
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sition 4.2. This criterion for integrability is then complemented, for general functions of 
C exp-class, by Proposition 4.3. Furthermore, integrability over valued field variables is 
reduced to integration over the residue field and the value group, by Propositions 4.6
and 4.7.

Write N for the set of natural numbers (the nonnegative integers). We sometimes 
consider N as the S-definable subset VG≥0 of VG.

Proposition 4.1. Let X be an S-definable subset of VGR × Z for some R ≥ 0 and some 
S-definable set Z. Let fj be in C (X) or in C e(X), for j in a finite set J . Then, there 
exist a finite partition of X into S-definable sets Xi, S-definable bijections

θi : VGri
≥0 ×Ai → Xi

for some ri ≤ R and some S-definable sets Ai ⊂ VGR−ri×Z with the following properties 
for each i:

• For every point z on Z, the fiber Ai,z is finite.
• There exists a matrix Mi ∈ ZR×ri and an S-definable function di : Ai → VGR such 

that θi is of the form

(x, y, z) �→ (Mix + di(y, z), z), (4.4)

for x ∈ VGri
≥0, y ∈ VFR−ri and z ∈ Z satisfying (y, z) ∈ Ai.

• Write g for the coordinate projection VGri
≥0×Ai → VGri onto the first ri coordinates. 

For each j ∈ J , there exist a finite set

Lij ⊂ Nri × Zri ,

and nonzero ca,b,i,j in C (Ai) (resp. in C e(Ai)) such that θ∗i (fj) is of the form
∑

(a,b)∈Lij

ca,b,i,j · ga · Lb·g. (4.5)

Here, ga stands for ga1
1 · · · gari

ri and b · g stands for b1 · g1 + · · · + bri · gri .

Furthermore, a sum of the form (4.5) (with all ca,b,i,j �= 0) is equal to 0 if and only if 
Lij = ∅.

Proof. The first part (about existence) follows from the parametric rectilinearization 
result [7, Theorem 3] and the quantifier elimination result from [36], namely as follows: 
Using quantifier elimination, one obtains that each fj can be written as a finite sum of 
expressions of the form c ·

∏s
�=1 h� · Lh0 , for c in C (Z) or C e(Z) and where h0, . . . , hs

are Presburger functions depending only on the first R (VG-)coordinates. Now apply 



R. Cluckers, I. Halupczok / Advances in Mathematics 409 (2022) 108635 17
paramatric rectilinearization to the graph of the function sending x ∈ VGR to the tuple 
of all h�(x), for all h� appearing in all the fj .

The furthermore part follows by the definitions of C and C e as tensor products in 
Section 3.2 and 3.3. Indeed, the family of functions (ga ·Lb·g)(a,b)∈Nri×Zri in P(VGri

≥0 ×
Ai) is linearly independent over P0(VGri

≥0 ×Ai), so no non-trivial sum of the form (4.5)
becomes zero in those tensor products. �

We introduce some shorthand notation, similar to [17, Section 3.1.2]. For h : X → VF
an S-definable function on an S-definable set X, we write E(h) as shorthand in C exp(X)
for the “motivic additive character” evaluated in h, which is in full denoted by [id : X →
X, 0, h] in 3.3, with id the identity map.

Proposition 4.2. Let X, f = f1, R and Z be as in Proposition 4.1, with furthermore 
Z = RFn × Z ′ for some S-definable Z ′ and n ≥ 0. Let h : X → VF be an S-definable 
function, and let F be the function F = f · E(h) in C exp(X). Then one has that f = 0
if and only if F = 0. Furthermore, the following conditions are equivalent:

(i) f is integrable in relative dimension 0 over Z ′, along the projection X → Z ′.

(ii) There exist a finite partition of X into pieces Xi as in Proposition 4.1 and with its 
further objects like θi, ri and Li = Li1 and its conditions for f1 = f and J = {1}, 
such that moreover

Li ⊂ Nri × (Z \N)ri for each i. (4.6)

(iii) For each way of writing X as finite partition into pieces Xi as in Proposition 4.1
and with its further notation and conditions for f1 = f and J = {1}, the inclusions 
as in (4.6) hold.

(iv) F is integrable in relative dimension 0 along the projection X → Z ′.

The inclusion from (4.6) corresponds to summability when one replaces L by real 
q > 1, where, obviously, α �→ αaqbα is summable over α ∈ N for some (a, b) ∈ N × Z if 
and only if b ∈ Z \N. Note that taking 0 as relative dimension for the projection map 
X → Z ′ from Proposition 4.2 is natural; indeed, dimensions are taken in the valued field.

Proof of Proposition 4.2. The first statement about the equivalence of F = 0 and f = 0
is clear by definition of C exp(X) from [17]. (Note that f = F ·E(−h), using the inclusions 
C (X) ⊂ C e(X) ⊂ C exp(X).) The equivalence between (i) and (iv) is similarly clear, as 
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well as the implications from (iii) to (ii) to (i) by the definitions of relative integrability 
from [16, Theorems 10.1.1, 14.1.1], [17, Theorems 4.1.1, 4.3.1]. (Indeed, replacing L by 
any real q > 1 yields clearly summable functions when Lij satisfies (4.6).) Let us thus 
suppose that (i) holds for f and prove (iii) for f , so let Xi and θi be given. By working 
piecewise and pulling back along the maps θi, we may suppose that X and f itself are 
already of the following form:

X = VGr
≥0 ×A

for some r ≤ R and some S-definable set A ⊂ VGR−r × RFn × Z ′ such that Aw is a 
finite set for every point w on RFn × Z ′, and, such that f is of the form

f =
∑

(a,b)∈L

ca,b · ga · Lb·g (4.7)

with L ⊂ Nr ×Zr a finite set, nonzero ca,b in C (A) (resp. in C e(A)), and where g is the 
coordinate projection X → VGr. Our goal is to prove that L is a subset of Nr×(Z \N)r. 
We will show how to prove L ⊂ Nr × (Z \ N) × Zr−1, the other coordinates working 
similarly.

Relative integrability of f over Z ′ in relative dimension 0 in particular implies relative 
integrability over Z := VGr−1

≥0 × A, with respect to the projection π≥2(x1, . . . , xr, a) :=
(x2, . . . , xr, a). The definition of relative integrability in relative dimension 0 implies that 
f is equal to a finite sum of products dj ·hj , for some nonzero dj ∈ C (Z) (resp. in C e(Z)) 
and some hj ∈ IZP(X), where IZP(X) stands for the RFn × Z-integrable constructible 
Presburger functions on X (namely, summable in the fibers of π≥2), as defined in [16, 
Section 4.5].

Apply Proposition 4.1 to the functions hj over this set Z (i.e., taking R = 1 and 
considering X as a subset of VG1×Z). This in particular yields maps θi : VGri

≥0×Ai → Xi

(for some ri ∈ {0, 1}, Ai, Xi). Since the union of all the Xi is equal to X, we have ri = 1
for at least one i. Fix such an i for the remainder of the proof. In particular, for that 
particular i, we have Ai ⊂ Z, and θi is of the form

θi : VG≥0 ×Ai → VG≥0 × Z, (x, z) �→ (e · x + d(z), z)

for some e ∈ Z and some definable d : Ai → VG. Moreover, one easily sees that e ≥ 1.
Pulling back (4.7) yields

θ∗i (f) =
∑

(a,b)∈L

ca,b · g̃aLb·g̃

for g̃ := g◦θi, which is the map sending (x1, ̂x, w) ∈ VG×VGr−1×A to (ex1+d(x̂, w), ̂x). 
Regrouping that sum according to the occurrence of x1 yields a sum of the form
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∑
(a′,b′)∈L′

c′a′,b′ · ga
′

1 Lb′·g1 (4.8)

for some L′ ⊂ N×Z, where g1 : VGri
≥0×Ai → VG is the projection to the first coordinate, 

and where c′a′,b′ live on Ai. Moreover, to obtain our desired conclusion that L is a subset 
of Nr × (Z \N) ×Zr−1, it now suffices to prove that L′ is a subset of N × (Z \N) (since 
e ≥ 1).

Our application of Proposition 4.1 to the hj also yields sets Lij ⊂ N×Z over which the 
sums (4.5) run (still for the specifically chosen i satisfying ri = 1). Since hj is summable 
over Z, so is θ∗i (hj), so we have Lij ⊂ N×(Z \N) for all j. This yields a similar statement 
for the pullback of f :

θ∗i (f) =
∑
j

θ∗i (dj)θ∗i (hj) =
∑
j

dj
∑

(a′,b′)∈Lij

ca′,b′,i,j · ga
′

1 · Lb′·g1 ,

which we can rewrite as

· · · =
∑

(a′,b′)∈Li

c′′a′,b′ · ga
′

1 · Lb′·g1

for some c′′a′,b′ in C (Ai) (resp. in C e(Ai)), and for Li ⊂
⋃

j Lij ⊂ N×(Z \N). Comparing 
the coefficients of this with those of (4.8) (which we can, by the furthermore part of 
Proposition 4.1), we obtain L′ ⊂ N × (Z \N), as desired. �

In the following proposition, E(h) is shorthand notation as recalled just above Propo-
sition 4.2.

Proposition 4.3 (Reduction from C exp to C e). Let f be in C exp(X) for some S-definable 
set X. Then there exist an S-definable set X̃ ⊂ X × RFr for some r ≥ 0 and f̃ in 
C exp(X̃) such that the projection p : X̃ → X is surjective with finite fibers and such that

f̃ = E(h)c

for some S-definable function h : X̃ → VF and some c in C e(X̃), and such that further-
more

μX,0(f̃) = f

and, for all points a, b on X̃ with p(a) = p(b),

ord(h(a) − h(b)) < 0, (4.9)

where μX,0(f̃) is the relative integral of f̃ in relative dimension 0 along p from Defini-
tion 3.6.2.
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Moreover, for any such choice of X̃ and f̃ , for each point x on X, each d ≥ 0, and each 
S-definable function g : X → Z whose fibers have dimension at most d, the following 
statements hold.

(a) One has

f = 0 if and only if f̃ = 0.

(b) One has

f(x) = 0 if and only if f̃ |p−1(x) = 0.

(c) The function f is integrable in relative dimension d over Z along g if and only if f̃
is integrable in relative dimension d over Z along g ◦ p.

Note that μX,0(f̃) from Proposition 4.3 coincides with the push-forward p!(f̃) of f̃
along p as in Section 3.6 of [17].

Proof of Proposition 4.3. By the definition of C exp(X) in Section 3.3, f is a finite sum 
of terms of the form

Hi ⊗ [pi : Yi → X, ξi, hi]

with Hi in C (X), Yi ⊂ X×RFri an S-definable set for some ri, and S-definable functions 
ξi : Yi → RF, hi : Yi → VF, and projection pi : Yi → X. Consider a point x on X and 
let Gx :=

⋃
i hi(p−1

i (x)) be the union over i of the images of the restrictions of hi

to p−1
i (x) (strictly speaking, the restriction of hi,S(x) to p−1

i (x)). Then Gx is a finite 
S(x)-definable set (indeed, definable functions from the residue field into the valued 
field have finite image, by quantifier elimination [36]). We will now construct the S-
definable set X̃, as follows. For each maximal subset C of Gx with the property that 
ord(aj − aj′) ≥ 0 for all aj , aj′ in C, let aC be the average of the elements of C, and 
let G′

x consist of the so-obtained elements aC . Clearly, this condition depends definably 
on x, i.e., there exists an S-definable set G̃ ⊂ X × VF such that G̃x equals G′

x for 
each point x on X. Now consider an S-definable injection ι : G̃ → X × RFr for some 
r ≥ 0 such that ι makes a commutative diagram with the projections to X (such ι exists 
by cell decomposition [36], or, more simply, by a direct argument involving uniform 
finiteness and taking differences with averages of close-by points). Let X̃ be ι(G̃) and 
write p : X̃ → X for the projection. We will now construct f̃ on X̃ as desired. For each 
i, let p̃i : Yi → X̃ be the S-definable function sending y in Yi with pi(y) = x to ι(x, aC), 
where aC is such that hi(y) belongs to the maximal subset C of Gx with the above 
property that ord(aj − aj′) ≥ 0 for all aj , aj′ in C. For each i, let ξ̃i : Yi → RF be the 
S-definable function sending y in Yi to ξi(y) + ac(hi(y) − aC), where p̃i(y) = ι(x, ac). 
Finally, let h : X̃ → VF be the S-definable function sending ι(x, aC) to aC . Now define 
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f̃ as E(h)c, with c =
∑

i p
∗(Hi) ⊗ [p̃i : Yi → X̃, ξ̃i, 0]. This finishes the proof of the first 

part of the Proposition.
In statements (a) and (c), the implication “⇐” follows directly from p!(f̃) = f . The 

other direction follows from the inequalities from (4.9) and by the definition of C exp

in Section 3 of [17] (which in particular has no relations in C exp relating the motivic 
additive character evaluated in values which are far apart, that is, having differences of 
negative valuation). Note that (b) is a special case of (a), with S(x) instead of S, and, 
with {x} instead of X. This finishes the proof of the Proposition. �

The following two propositions give a criterion for integrability for integrals over 
valued fields variables by reducing to the situation of Proposition 4.2, of value group and 
residue field variables.

Definition 4.4 (Boxes). By a box B in VFn
K with K in S and n ≥ 0 we mean a Cartesian 

product of n balls {xi | ord(xi − ai) ≥ mi} for some ai ∈ VFK and some mi in VGK for 
i = 1, . . . , n, with B = {0} in case that n = 0. Such a box B has (valued field) dimension 
n, and, we write radn(B) for m1 + · · · + mn (the sum of the valuative radii).

We follow [4, Definition 7.9] for the definition of strict C1 functions. This notion is 
a useful analogue for discrete valued fields of the notion of real C1 functions. Indeed, 
see [26,3,4,25] for inverse and implicit function theorems for strict C1 maps, and related 
results.2

Definition 4.5 (Strict C1 functions). A function f : U ⊂ Kn → Km with U open in Kn

and K in S is called strict C1 at a ∈ U if there is a matrix A in Km×n such that

lim
(x,y)→(a,a)

ord(f(x) − f(y) −A · (x− y)) − ord(x− y) = +∞

where the limit is taken over (x, y) ∈ U2 with x �= y. Such A is automatically unique 
and is denoted by f ′(a) or by Df(a). The function f is called strict C1 if it is strict C1

at each a ∈ U .

Proposition 4.6 (Strict C1 Parameterization on boxes). Let fj be in C (X), resp. in 
C e(X), for some S-definable sets Z and X ⊂ VFn × Z and for j running over a fi-
nite set J . Then there exist S-definable subsets

Yi ⊂ VFi × VGi × RFm × Z

for i = 0, . . . , n and some m ≥ 0, and S-definable injections

2 Note that in Definition 2.1.1 of [13], which recalls the very same definition from [4, Definition 7.9], the 
norm is missing in the numerator of the difference quotient.
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ϕi : Yi → X

over Z such that for each i, each j, and for each point z on Zi := pi(Yi) with pi : Yi →
VGi × RFm × Z the projection map, the following hold.

(a) The sets Xi := ϕi(Yi) are disjoint and their union equals X.
(b) The fiber Yi,z = p−1

i (z) is a box in VFi, and hence, is of (valued field) dimension i.
(c) For each point z on Zi, the map ϕi,z (being ϕi restricted to Yi,z) is a strict C1 map 

which is moreover an isometry onto its image. Furthermore, the Jacobian of ϕn is 
constant equal to 1.

(d) There are Fij in C (Zi) (resp. in C e(Zi)) such that ϕ∗
i (fj) equals p∗i (Fij). In partic-

ular, the restriction of ϕ∗
i (fj) to Yi,z is constant.

Recall that ϕi being over Z means that ϕi makes a commutative diagram with the 
projections to Z. An isometry is for the supremum norm, as usual on non-archimedean 
fields, with the valuation of a tuple being the minimum of the valuations of the tuple 
entries.

Proof of Proposition 4.6. The proposition follows from an iterated application of the 
cell decomposition theorem of Pas [36], in the form of [16, Theorems 7.2.1, 7.5.3]. (In 
Section 7.5 of [16] it is shown that the maps ϕi,z can even be taken analytic.) To see 
that only one part Yi is needed in each dimension i = 0, . . . , n, one notes that the 
corresponding disjoint unions can be easily realized by increasing r if necessary. The 
isometric nature of the ϕi,z follows by iteration in the n variables of the variant of [36, 
Theorem 3.2] given by Theorem 7.5.3 of [16]. That the Jacobian of ϕn can be taken to be 
identically equal to 1 follows from the Jacobian matrix being upper triangular with 1 on 
the diagonal (indeed, the iterated cell decomposition gives ϕn as a triangular translation, 
like (x, y) �→ (x, y + c(x)) with c being strict C1). The Fij are given by the (iterated) 
variant of Pas cell decomposition given by Theorem 7.2.1 of [16] in the case that the fj
lie in C (X). In the more general case that the fj lie in C e(X), one writes f as a finite 
sum of terms of the form H� ⊗ [Y� → X, ξ�, 0] with H� in C (X), and then the Fij are 
found as in the proof of Theorem 7.2.1 of [16] with the graphs of the ξ� instead of the 
sets Y� (that is, with the ai in the proof of Theorem 7.2.1 of [16] being the classes of the 
graph of the ξ�). �
Proposition 4.7 (Reduction of integrability to RF and VG). Let fj, X, Z, J be as in 
Proposition 4.6, and choose the data Xi, ϕi, Yi, Fij, etc., as given by that proposition. 
Let dj be integers with 0 ≤ dj ≤ n for j ∈ J . For each i and j, consider the S-definable 
function gi on Zi sending a point z on Zi to radi(p−1

i (z))) as in Definition 4.4. Then 
the following are equivalent.

(i) fj is integrable in relative dimension dj over Z along the projection X → Z.
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(ii) One has Fij = 0 when i > dj, and, for i = dj, the function FijL−gi is integrable in 
relative dimension 0 over Z along the projection to Zi → Z.

The condition in (i) that fj in C (X) is integrable in relative dimension dj over Z, 
means two conditions: Firstly, there exists an S-definable subset D of X of relative 
dimension ≤ dj over Z such that multiplying fj with the characteristic function of D
yields fj again, and, secondly, the image of fj in Cdj (X → Z) lies in IZC(X → Z) with 
notation from [16, Section 14]. For C e instead of C one uses [17, Section 4.3] instead of 
[16, Section 14].

Proof of Proposition 4.7. This follows at once for C from iterated applications of A7 
and A8 of Theorems 10.1.1, 14.1.1 of [16], and, correspondingly for C e from Theorems 
4.1.1, 4.3.1 of [17] (in the simple case of C e). �
5. Proofs of the main results

All definitions and auxiliary results for Theorems 1 and 2 have now been developed, 
so that we can proceed with their proofs.

By taking the difference of f and g, it is enough to prove Theorem 1 with g = 0. We 
can now jointly prove Theorem 1 for f in C (X) and in C e(X), with g = 0. The case of 
f in C exp(X) will be reduced to the case of f in C e(X) and g = 0 by Proposition 4.3, 
and, it will be finished by Corollary 3.6.5 for C e.

Proof of Theorem 1 for C (X) and C e(X). Let f be in C (X), resp. in C e(X), such that 
f(x) = 0 for all points x on X. We need to show that f = 0 in C (X), resp. in C e(X).

Case 1. X ⊂ RFm for some m ≥ 0.

Briefly, this case follows from our assumptions on S from Section 3.1 (which in par-
ticular impose that the residue fields form an elementary class) and logical compactness. 
One unwinds relations coming from localisation, from tensor product, and from the 
Grothendieck ring relations in the residue field part of the definition of C (X), resp. of 
C e(X), to find relations in the free group generated by definable subsets in the residue 
field sort up to definable bijections. Logical compactness then allows us get from a state-
ment about all points on X to a statement about the entire X. Let us develop this 
argument in detail.

Let us first treat the case that f lies in C (X). The ring C (X) is the localisation 
of Q(X) by the multiplicative system generated by L and (1 − Li) for integers i �= 0, 
with notation from Section 3.2 and where L is the class of RF × X (the class of the 
affine residue field line over X) in Q(X). Thus, by multiplying f by some power of L
and some factors of the form (1 − Li) for some nonzero i, we may (and will) suppose 
that f is a difference of the form [A] − [B] for some S-definable sets A ⊂ X × RFn1
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and B ⊂ X × RFn2 for some n1, n2 ≥ 0. Indeed, since those factors are units, this 
modification of f preserves both (1) and (2) from the theorem.

For each point x on X, the equation f(x) = 0 implies, that there is an S(x)-definable 
bijection ψx between the S(x)-definable sets

(
Ax × RFa ×

∏
i∈I

(RFi \ {0}i)ai
)
�Wx (5.10)

and

(
Bx × RFa ×

∏
i∈I

(RFi \ {0}i)ai
)
�Wx (5.11)

for some finite set of positive integers I, some integers a, ai ≥ 0, and some S(x)-definable 
subset Wx of RFm′

for some m′ ≥ 0, and where � stands for the disjoint union. (The 
expressions (5.10) and (5.11) arise from definition of the ring C (X): RFa ×

∏
i∈I(RFi \

{0}i)ai comes from the localization, and Wx arises when passing from the semiring to 
the ring.) Note that these data of ψx, I, a, ai, m′, and Wx depend on x. By elimination 
of valued field quantifiers from [36], these data only involve the residue field sort, with 
the ring language enriched with some constant symbols. Hence, by logical compactness 
and the fact that the residue fields of structures in S form an elementary class, we may 
suppose that I, a, ai and m′ do not depend on x and that Wx and ψx are S-definable 
uniformly in x. Hence, by invertibility of La ·

∏
i(1 − Li)ai , we find f = 0. This finishes 

Case 1 for f in C (X). The argument for f in C e(X) is similar, using the relations for 
Qe(X) instead of Q(X).

Case 2. X ⊂ VGR × RFn for some R, n ≥ 0.

Apply Proposition 4.1 to X and f (with J = {1}, and where we omit the index j over 
J), to find Xi, θi, and Li and associated data and properties as given by the Proposition. 
We may suppose that X = Xi for some i. Pulling back via θi, we may suppose that θi is 
the identity map. Let us write L for Li and r for ri. Thus, we have X = A ×Nr for some 
A ⊂ Λ × RFn with Λ finite, and f =

∑
(a,b)∈L ca,b · ga · Lg·b, with L ⊂ Nr × Zr finite. 

That Λ can be taken constant follows from (model theoretic) orthogonality between RF
and VG, which follows easily from Pas’s quantifier elimination result in the form of (3.5) 
and (3.7) of [24], see also Theorem 2.1.1 of [16].

Since the functions Lgi are invertible in C (X), we may assume that all the exponents 
bi are non-negative, i.e., L ⊂ N2r. (If not, multiply f with suitable powers of the Lgi ; 
the theorem holds for the new f if and only if it holds for the old f .)

We consider f as a polynomial in g1 and in Lg1 , i.e.,

f = P (g1,L
g1) (5.12)

where P ∈ R[x, y] is a polynomial with coefficients in the ring
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R := C (A)[g2, . . . , gr,L
g2 , . . . ,Lgr ]

(or with C e(A) instead of C (A)).
Let d = d(f) be the degree of P in y and let e = e(f) be the degree of P (x, 0) in x, 

where we define the degree of the zero-polynomial to be −1. We will proceed by induction 
on the numbers r, d, and e (in lexicographical order).

The case r = 0 is covered by Case 1. Indeed, Λ can be sent into RF by an S-definable 
injection. So, let us suppose that r > 0.

If e = −1, then the function f ′ obtained by dividing f by Lg1 also has the form (5.12), 
but with lower value d(f ′). By induction, we obtain f ′ = 0, which implies f = 0. So from 
now on we suppose that e ≥ 0 (which also implies d ≥ 0).

We can also exclude the case d = e = 0, since in that case, f does not depend on g1, 
so that we can conclude using induction on r (by writing f as the pull-back of a function 
on A ×Nr−1).

For the remaining cases, define fnew such that

fnew(z1, . . . , zr) = f(z1 + 1, z2, . . . , zr) − f(z1, . . . , zr).

More concretely, fnew = Pnew(g1, Lg1), where

Pnew(x, y) := P (x + 1,Ly) − P (x, y) ∈ R[x, y].

Note that fnew(x) = 0 for all points x on X. Also note that e(fnew) < e (the xd-
monomial cancels), so by induction, fnew is zero in C (X). By the ‘furthermore’ statement 
of Proposition 4.1, this implies that Pnew is the zero-polynomial.

Let us now first treat the case that d = 0. (Recall that the case d = e = 0 has already 
been treated, so that we may now assume e ≥ 1.) As an intermediate step towards 
proving f = 0, let us derive that the polynomial e · P ∈ R[x, y] is zero. (Note that R
may have torsion.) Let c ∈ R be the coefficient of the monomial xe in the polynomial P . 
Then the coefficient of xe−1 in Pnew is equal to e · c. Since this is equal to zero, we obtain 
that e · P (x, 0) has degree at most e − 1 in x, so that we can apply induction to e · f . 
This shows that e · f = 0 and hence, by the ‘furthermore’ statement of Proposition 4.1, 
that e · P = 0, as claimed.

Now we show, still for the case d = 0 and e > 0, that f = 0. To this end, for each 
i = 0, . . . , e −1, let si be the S-definable map A ×Nr → A ×Nr sending (a, z1, . . . , zr) to 
(a, i + ez1, z2, . . . , zr), and set fi := s∗i (f). Then clearly fi evaluates to 0 at every point 
on X, and it is of the form (5.12), that is, fi = Pi(g1), with Pi(x) = P (i + ex). (Recall 
that we are in the case d = 0, so that P does not depend on y.) Using that e · P = 0, 
we obtain Pi(x) = P (i), namely as follows: Writing P as P =

∑
a�x

� (with a� ∈ R), we 
have e · a� = 0 for each �, so when multiplying out 

∑
a�(i + ex�)�, everything vanishes 

except 
∑

a�i
�.

Hence, we find, by the case d = e = 0, that fi = 0 for all i. Using that f can be 
expressed in terms of the fi, we deduce that f = 0. Indeed, f is the sum (over i) of the 
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functions obtained by pulling fi back using the inverse of s∗i (which is defined on the 
image of si), and then extending this pull-back by 0 on the complement of the image of 
si.

Finally, we treat the case d > 0. Let c ·xe′yd be the monomial of P of maximal degree 
in x, among those of degree d in y (for some c ∈ R \ {0}). Then the coefficient of xe′yd

in Pnew is (Ld − 1) · c. So (Ld − 1) · c = 0, and since (Ld − 1) is invertible, we deduce 
c = 0, contradicting the choice of e′.

This finishes the proof of Case 2.

Case 3. General case.

In this case, X is a general S-definable set. One has X ⊂ VFn × RFm × VGR for 
some n, m, R ≥ 0. By Proposition 4.6 applied to f1 = f and with J = {1} and Z =
RFm × VGR, we obtain finitely many function Fi1 from item (d) of Proposition 4.6. 
By the properties provided by that proposition, it is now enough to treat the case that 
f is in fact equal to one of the Fi1. We may thus suppose that n = 0, meaning that 
X ⊂ RFm × VGR for some m and R. (Alternatively, use Theorem 7.2.1(2) of [16] for 
such a reduction.) But this now falls under the scope of Case 2. The proof of Theorem 1
for C (X) and for C e(X) is finished. �

Note that by the above proofs, we may from now on use Corollary 3.6.5 in the cases 
of C and C e.

Proof of Theorem 1 for C exp(X). Let f be in C exp(X) such that f(x) = 0 for each point 
x on X. We need to show that f = 0. We will use Proposition 4.3 and Corollary 3.6.5
to reduce to the case that f lies in C e(X), for which we already proved Theorem 1. 
Let p : X̃ → X, f̃ ∈ C exp(X̃), and c ∈ C e(X̃) be as given by Proposition 4.3. By our 
assumption that f(x) = 0 for each point x on X, we find that f̃(x̃) = 0 for each x̃ in 
X̃ by (b) of Proposition 4.3. Hence, by the first part of Proposition 4.2 we find that 
c(x̃) = 0 for each x̃ in X̃. Hence, by Corollary 3.6.5 (for the case C e) we find that c = 0. 
This clearly implies that f̃ = 0 (again by the first part of Proposition 4.2), which in turn 
implies f = μX,0(f̃) = 0, as desired, with μX,0 as in Proposition 4.3. This finishes the 
proof of Theorem 1. �

We end the paper with the proof of Theorem 2.

Proof of Theorem 2. By the definition of integrability over Z along g, statement (1) of 
the theorem implies statement (2). Let us prove the reverse implication. So, we are given 
f and g such that for each point z on Z, the restriction f|g−1(z) is integrable in dimension 
d.

Case 1. X ⊂ VGR × RFn × Z for some R ≥ 0 and some n ≥ 0, g : X → Z is the 
projection, and d = 0.



R. Cluckers, I. Halupczok / Advances in Mathematics 409 (2022) 108635 27
Apply Proposition 4.1 to f1 = f with J = {1} to obtain maps θi and corresponding 
objects Li, ri, ca,b, etc., as in the proposition, where we omit the index j ∈ J . By 
finite additivity we may suppose that X = Xi for some i. By pulling back under θi we 
may in fact suppose that θi is the identity map; in other words, without loss, f itself 
is of the form (4.5) given in Proposition 4.1. We are given that for any point z in Z, 
the restriction f|g−1(z) is integrable. Thus, Proposition 4.2 (applied to this restriction) 
implies that ca,b|g−1(z) = 0 for each point z on Z and each (a, b) /∈ Nri × (Z \ N)ri . 
Using Corollary 3.6.5, one obtains that ca,b = 0 for those (a, b). Hence, f is integrable 
in relative dimension 0 over Z along g, by Proposition 4.2 (or just by the definition of 
integrability). This finishes Case 1.

Case 2. General case.

In this case X is a general S-definable set. The case where f lies in C (X) or C e(X)
reduces immediately to Case 1 by Propositions 4.6 and 4.7 (see Case 3 of the proof of 
Theorem 1).

Let us finally treat the case that f is in C exp(X). We reduce to the previous case of 
C e instead of C exp, again by Proposition 4.3, as follows. Suppose that for each point z
on Z, the restriction f|g−1(z) is integrable in dimension d. Let X̃, p, c, and f̃ be given by 
Proposition 4.3. By (c) of Proposition 4.3, it is enough to prove that f̃ is integrable in 
relative dimension d over Z along g ◦ p. By (c) of Proposition 4.3, now applied with Z
replaced by {z} for a point z on Z and f replaced by f|g−1(z), it follows that f̃|(g◦p)−1(z)
is integrable in dimension d. By the equivalence of (i) with (iv) from Proposition 4.2, 
it follows that c|(g◦p)−1(z) is integrable in dimension d for each point z on Z. Hence, by 
the already proved part of Case 2 for C e, applied to c, we find that c is integrable in 
relative dimension d over Z along g ◦ p. Again by the equivalence of (i) with (iv) from 
Proposition 4.2, we find that f̃ is integrable in relative dimension d over Z along g ◦ p. 
This finishes the proof of Theorem 2. �
Remark 5.1. As mentioned, our results and proofs have natural adaptations to the related 
frameworks of Section 3.1 of [18] and the corresponding ones from [34], since the key 
points behind Theorems 1 and 2 are the facts that the residue fields form an elementary 
class, that the residue field is orthogonal (in the model theoretic sense) to the value group 
which carries the pure Presburger structure, and, the reduction to situations without 
valued field variables essentially enabled by cell decomposition [36]. More general (future) 
adaptations to the more powerful axiomatic framework of hensel-minimality of [14] are 
possible under the corresponding conditions, which come partly for free under hensel 
minimality.
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